Acta Crystallographica Section E

## Structure Reports

Online
ISSN 1600-5368

## Kunitoyo Osawa, Hideki

Furutachi, Shuhei Fujinami* and Masatastu Suzuki

Department of Chemistry, Faculty of Science, Kanazawa University, Kakuma-machi,
Kanazawa 920-1192, Japan

Correspondence e-mail:
fujinami@cacheibm.s.kanazawa-u.ac.jp

## Key indicators

Single-crystal X-ray study
$T=123 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
$R$ factor $=0.039$
$w R$ factor $=0.069$
Data-to-parameter ratio $=16.6$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

# trans,trans,trans-Diethanoldiquinaldinatoiron(II) 

Received 28 March 2003
Accepted 1 May 2003
Online 9 May 2003

## Comment

Quinaldic acid is associated with tryptophan metabolism (Zhou et al., 1989) and is used as a reagent for solvent extraction of divalent transition metal ions (Högberg et al., 1985). There are few structural studies of quialdinate complexes in spite of numerous studies of related picolinato complexes. Only the $\mathrm{Cu}^{2+}$ (Haendler, 1986), $\mathrm{Rh}^{+}$(Lamprecht et al., 1986) and $\mathrm{Ga}^{3+}$ (Li et al., 1996) complexes have been structurally characterized. Therefore, structural information of another transition metal complex is desired.


The title complex, (I), is monomeric and has a distorted octahedral structure, with the central atom lying on an inversion center (Fig. 1 and Table 1). The complex has a trans,trans,trans-geometry with respect to three kinds of donors. The quinaldinate acts as a planar $\mathrm{N}, \mathrm{O}$-bidentate ligand and forms a five-membered chelate ring upon coordination. Two quinaldinato ligands are connected by weak intramolecular hydrogen bonds; the distance between atoms C9 and $\mathrm{O} 1^{\mathrm{i}}$ is 3.152 (3) $\AA$ [symmetry code: (i) $-x, 1-y,-z$ ].

There exists a strong hydrogen bond between an ethanol molecule and the uncoordinated O atom of a neighboring quinaldinate ligand. The distance between atoms O 3 and $\mathrm{O} 2{ }^{\mathrm{ii}}$ is 2.694 (3) $\AA$ [symmetry code: (ii) $1-x, 1-y,-z$ ]. The hydrogen bonds form one-dimensional molecular chains parallel to the $a$ axis. The chains are connected by weak hydrogen bonds (Table 2).

## Experimental

The title complex was prepared under an $\mathrm{N}_{2}$ atmosphere using Schlenk techniques. To a solution of $\mathrm{Fe}\left(\mathrm{BF}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(0.134 \mathrm{~g}$, 0.397 mmol ) in 1.6 ml ethanol was added a solution containing quinaldic acid ( $0.173 \mathrm{~g}, 0.999 \mathrm{mmol}$ ) in ethanol ( 6 ml ) and triethylamine ( $140 \mathrm{ml}, 0.100 \mathrm{mmol}$ ). After vigorous stirring, the solution was allowed to stand for 2 d to afford red-violet crystals suitable for X-ray analysis. The IR spectrum shows a $\nu\left(\mathrm{CO}_{2}\right)$ band at $1628 \mathrm{~cm}^{-1}$. The electronic spectrum in DMF exhibits an absorption maximum at $527 \mathrm{~nm}(\varepsilon=795)$.

## Crystal data

$\left[\mathrm{Fe}\left(\mathrm{C}_{10} \mathrm{H}_{6} \mathrm{NO}_{2}\right)_{2}\left(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}\right)_{2}\right]$
$M_{r}=492.30$
Monoclinic, $P 2_{1} / n$
$a=5.816(2) \AA$
$b=9.557$ (3) Å
$c=19.948$ (5) $\AA$
$\beta=91.461$ (7) ${ }^{\circ}$
$V=1108.4(6) \AA^{3}$
$Z=2$

## Data collection

Rigaku/MSC Mercury CCD diffractometer
$\omega$ scans
Absorption correction: multi-scan (Jacobson, 1998)
$T_{\text {min }}=0.783, T_{\text {max }}=0.964$
8886 measured reflections
$D_{x}=1.475 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 4502 reflections
$\theta=3.1-27.5^{\circ}$
$\mu=0.72 \mathrm{~mm}^{-1}$
$T=123 \mathrm{~K}$
Prism, red-violet
$0.20 \times 0.05 \times 0.05 \mathrm{~mm}$

2511 independent reflections
2006 reflections with $F^{2}>2 \sigma\left(F^{2}\right)$
$R_{\text {int }}=0.039$
$\theta_{\text {max }}=27.5^{\circ}$
$h=-7 \rightarrow 7$
$k=-12 \rightarrow 12$
$l=-25 \rightarrow 25$

## Refinement

Refinement on $F$
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{o}\right)+0.00168\left|F_{o}\right|^{2}\right]$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.33 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.27 \mathrm{e}^{-3}$
$R=0.039$
$w R=0.069$
$S=1.07$
2506 reflections
151 parameters

Table 1
Selected geometric parameters ( $\left({ }^{\circ},{ }^{\circ}\right)$.

| $\mathrm{Fe}-\mathrm{O} 1$ | $2.032(2)$ | $\mathrm{Fe}-\mathrm{N} 1$ | $2.240(2)$ |
| :--- | :--- | :--- | :--- |
| $\mathrm{Fe}-\mathrm{O} 3$ | $2.154(2)$ |  |  |
| $\mathrm{O} 1-\mathrm{Fe}-\mathrm{O} 3$ | $92.01(8)$ | $\mathrm{O} 3-\mathrm{Fe}-\mathrm{N} 1$ | $93.82(8)$ |
| $\mathrm{O} 1-\mathrm{Fe}-\mathrm{N} 1$ | $77.30(8)$ |  |  |

Table 2
Hydrogen-bonding geometry ( $\mathrm{A},{ }^{\circ}$ ).

| $D-\mathrm{H} \cdots A$ | $D-\mathrm{H}$ | $\mathrm{H} \cdots A$ | $D \cdots A$ | $D-\mathrm{H} \cdots A$ |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{C} 9-\mathrm{H6} \cdots \mathrm{O} 1^{\text {i }}$ | 0.96 | 2.27 | 3.152 (3) | 153 |
| $\mathrm{O} 3-\mathrm{H} 7 \cdots \mathrm{O}^{1 i}$ | 0.96 | 2.51 | 3.192 (3) | 128 |
| $\mathrm{O} 3-\mathrm{H} 7 \cdots \mathrm{O} 2^{\text {ii }}$ | 0.96 | 1.74 | 2.694 (3) | 172 |
| $\mathrm{C} 4-\mathrm{H} 2 \cdots \mathrm{O} 2^{\text {iii }}$ | 0.96 | 2.50 | 3.359 (3) | 149 |
| $\mathrm{C} 6-\mathrm{H} 3 \cdots \mathrm{O} 2^{\text {iii }}$ | 0.96 | 2.57 | 3.410 (3) | 146 |

Symmetry codes: (i) $-x, 1-y,-z$; (ii) $1-x, 1-y,-z$; (iii) $\frac{1}{2}-x, y-\frac{1}{2}, \frac{1}{2}-z$.

H atoms were included at calculated positions $(\mathrm{C}-\mathrm{H} / \mathrm{O}-\mathrm{H}=$ $0.96 \AA$ ), with isotropic displacement parameters of $1.2 U_{\text {eq }}$ (parent atom).

Data collection: CrystalClear (Molecular Structure Corporation/ Rigaku, 2001); cell refinement: CrystalClear; data reduction: TEXSAN (Molecular Structure Corporation/Rigaku, 2000); program(s) used to solve structure: SHELXS86 (Sheldrick, 1985);


Figure 1
ORTEP-3 drawing (Farrugia, 1997) of (I), half of which defines the asymmetric unit, showing the atomic numbering scheme. Displacement ellipsoids for the non-H atoms are drawn at the $50 \%$ probability level.


Packing diagram of the title complex. Dotted lines show hydrogen bonding, which forms molecular chains parallel to the $a$ axis.
program(s) used to refine structure: TEXSAN; molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: TEXSAN.

## References

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Haendler, H. M. (1986). Acta Cryst. C42, 147-149.
Högberg, A. G. S., Madan, K., Moberg, C., Sjöberg, B., Weber, M. \& Muhammed, M. (1985). Polyhedron, 4, 971-977.
Jacobson, R. (1998). REQAB. Private communication.
Lamprecht, G. J., Beetge, J. H., Leipoldt, J. G. \& De Waal, D. R. (1986). Inorg. Chim. Acta, 113, 157-160.
Li, W., Olmstead, M. M., Miggins, D. \& Fish, R. H. (1996). Inorg. Chem. 35, 5155.

Molecular Structure Corporation/Rigaku (2000). TEXSAN. Version 1.11. MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA, and Rigaku Corporation, 3-9-12 Akishima, Tokyo, Japan.
Molecular Structure Corporation/Rigaku (2001). CrystalClear. Version 1.3. MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA, and Rigaku Corporation, 3-9-12 Akishima, Tokyo, Japan.
Sheldrick, G. M. (1985). Crystallographic Computing 3, edited by G. M.
Sheldrick, C. Krüger and R. Goddard, pp. 175-189. Oxford University Press. Zhou, P., O’Hagan, D., Mocek, U., Zeng, Z., Yuen, L., Frenzel, T., Unkefer, C. J., Beale, J. M. \& Floss, H. G. (1989). J. Am. Chem. Soc. 111, 7274-7276.

